Dormant black hole eats star, becomes X-ray flashlight
Roughly 90 percent of the biggest black holes in the known universe are dormant, meaning that they are not actively devouring matter and, consequently, not giving off any light or other radiation. But sometimes a star wanders too close to a dormant black hole and the ensuing feeding frenzy, known as a tidal disruption event, sets off spectacular fireworks. Astronomers from the University of Maryland and the University of Michigan are the first to document X-rays bouncing around deep within the walls of a once-dormant black hole's newly formed accretion disk--the giant, puffy cloud of shredded star stuff circling the black hole, waiting for its turn to be swallowed up--following a tidal disruption event. Using these data, the researchers discerned the shape and activity of the accretion disk near a supermassive black hole named Swift J1644+57.
This marks the first time such detailed observations have been made for a dormant supermassive black hole. In addition, the team's methodology could open the door to reliable measurements of black hole spin in the near future. The results are published in the June 22, 2016 advance online edition of the journal Nature.
"Most tidal disruption events don't emit much in the high-energy X-ray band. But there have been at least three known events that have, and this is the first and only such event that has been caught at its peak," said Erin Kara, a Hubble Postdoctoral Fellow in astronomy at UMD and the Joint Space-Science Institute and lead author on the study. "NASA's Swift satellite saw it first and triggered the European Space Agency's XMM-Newton satellite and the Japanese Aerospace Exploration Agency and NASA's Suzaku satellite to target it for follow-up. So we have excellent data. We're lucky that the one event we have is showing us all these exciting new things."
The accretion disk has an effect somewhat like the reflective shield behind a flashlight bulb, reflecting, amplifying and focusing the radiation. The fact that X-rays can originate deep within the accretion disk of a tidal disruption event is surprising, according to Kara. Conventional wisdom among astronomers has long held that, during a tidal disruption event, high-energy X-rays are created further from the black hole in the relativistic jets--huge beams of particles ejected by the black hole and accelerated to nearly the speed of light. But seeing X-ray emissions bouncing off the walls of the inner accretion disk has cast a new light on this assumption.
"Before this result, there was no clear evidence that we were seeing into the innermost regions of the accretion disk," Kara said. "We thought the emission was from the jet pointed at us, or further away and not close to central black hole. This new study shows us that, actually, we can see this reverberation at work very close to the central black hole."
To date, most of what astronomers know about supermassive black holes comes from a relative handful of black holes that are actively gathering and consuming matter. Evidence suggests, however, that these active black holes only account for about 10 percent of the total population of supermassive black holes in the universe. So any data from a dormant black hole is incredibly valuable to astronomers, in their effort to understand all types of black hole activity.
"Understanding the black hole population in general is important. Black holes have played an important role in how galaxies evolved. So even if they're dormant now, they weren't before," said Chris Reynolds, a professor of astronomy at UMD and a Fellow at the Joint Space-Science Institute who is a co-author on the study. "If we only look at active black holes, we might be getting a strongly biased sample. It could be that these black holes all fit within some narrow range of spins and masses. So it's important to study the entire population to make sure we're not biased."
Swift J1644+57 consumed the material from the shredded star so quickly, the event briefly exceeded the Eddington Limit--the theoretical maximum "speed limit" that defines how fast a black hole can consume matter. This finding can help astronomers to understand how supermassive black holes grow to their enormous masses--up to several million times the mass of the sun.
"The meaning of this extends far beyond the studies of tidal disruption events," said Lixin Dai, a postdoctoral associate in physics at UMD and the Joint Space-Science Institute who is a co-author on the study. "It can help us understand how the biggest black holes in the universe formed and co-evolved with their host galaxies."
The team used X-ray reverberation mapping to chart out the inside of the accretion disk. Much like sound waves can be used to map the seafloor or canyons by measuring the time delays of sound echoes, Kara, Reynolds and their colleagues computed small delays in the arrival time of X-ray signals reflected from iron atoms in the accretion disk.
"We know how sound echoes in a large auditorium, for example. Because we know the speed of sound, we can use the time delay information to calculate the shape of the auditorium," Kara explained. "We are doing the same with X-ray radiation to map out the inner accretion disk. It's a cool, novel technique that has only been developed within the last six years."
Although the researchers have not yet been able to measure the spin of the black hole with reverberation mapping, they say the method could be used to make such measurements in the near future. By imaging the activity of the accretion disk immediately next to the black hole--which would be strongly affected by the black hole's spin--the method could be used to directly measure the speed and direction of spin.
"Looking at tidal disruption events with reverberation mapping might help us probe the spin of black holes in the future," Reynolds said. "But just as importantly, we can follow along after an event and watch how the accretion disk spins down and energy dissipates as the black hole returns to a quiescent state. We might finally be able to observe all of these various states that, so far, we only know from theory textbooks."
Source: University of Maryland
Articles on the same topic
- Using gravitational waves to catch runaway black holesThu, 30 Jun 2016, 13:29:12 UTC
- RIT professors create new method for identifying black holesWed, 29 Jun 2016, 19:43:43 UTC
- Seeds of black holes could be revealed by gravitational waves detected in spaceSun, 26 Jun 2016, 23:32:39 UTC
- Simulations foresee hordes of colliding black holes in LIGO's futureFri, 24 Jun 2016, 13:04:41 UTC
- Doubled sensitivity could allow gravitational wave detectors to reach deeper into spaceThu, 23 Jun 2016, 14:26:11 UTC
- X-ray echoes of a shredded star provide close-up of 'killer' black holeWed, 22 Jun 2016, 18:38:41 UTC
- RIT professor predicts a universe crowded with black holesWed, 22 Jun 2016, 18:12:32 UTC
- Gravitational waves detected from second pair of colliding black holesThu, 16 Jun 2016, 16:56:23 UTC
- Gravitational waves caught againThu, 16 Jun 2016, 13:55:32 UTC
- New gravitational wave observed from second pair of black holesWed, 15 Jun 2016, 18:35:47 UTC
- Scientists detect second pair of colliding black holesWed, 15 Jun 2016, 18:35:37 UTC
- Gravitational waves detected from second pair of colliding black holesWed, 15 Jun 2016, 17:34:50 UTC
- Gravitational waves detected for a second timeWed, 15 Jun 2016, 17:34:36 UTC
- Did gravitational wave detector find dark matter?Wed, 15 Jun 2016, 17:08:32 UTC
Other sources
- RIT Professors Create New Method for Identifying Black Holesfrom Newswise - ScinewsThu, 30 Jun 2016, 17:21:55 UTC
- Using gravitational waves to catch runaway black holesfrom Science BlogThu, 30 Jun 2016, 16:11:01 UTC
- Using gravitational waves to catch runaway black holesfrom PhysorgThu, 30 Jun 2016, 14:21:08 UTC
- Researchers create new method for identifying black holesfrom Science DailyThu, 30 Jun 2016, 13:51:18 UTC
- Researchers create new method for identifying black holesfrom PhysorgWed, 29 Jun 2016, 20:11:00 UTC
- LIGO Discoveries Will Help Scientists Run Stellar Autopsies on Colliding Black Holesfrom Scientific AmericanWed, 29 Jun 2016, 11:31:26 UTC
- Gravitational physics poised for new era of discoveryfrom PhysorgTue, 28 Jun 2016, 10:41:11 UTC
- Seeds of Black Holes Could Be Revealed by Gravitational Waves Detected in Spacefrom Newswise - ScinewsMon, 27 Jun 2016, 18:01:07 UTC
- Seeds of black holes could be revealed by gravitational waves detected in spacefrom Science DailyMon, 27 Jun 2016, 15:11:08 UTC
- Seeds of black holes could be revealed by gravitational waves detected in spacefrom Science BlogMon, 27 Jun 2016, 13:01:00 UTC
- Seeds of black holes could be revealed by gravitational waves detected in spacefrom PhysorgMon, 27 Jun 2016, 8:01:32 UTC
- Simulations Foresee Hordes of Colliding Black Holes in Gravitational Wave Observatory's Futurefrom Newswise - ScinewsFri, 24 Jun 2016, 8:51:09 UTC
- How LIGO's merging black holes formed from two massive starsfrom Physics WorldFri, 24 Jun 2016, 3:41:02 UTC
- Black Hole Crashes Warp Spacetime 1,000 Times Yearlyfrom Space.comThu, 23 Jun 2016, 17:21:11 UTC
- Doubled sensitivity could allow gravitational wave detectors to reach deeper into spacefrom Science DailyThu, 23 Jun 2016, 15:51:51 UTC
- Doubled sensitivity could allow gravitational wave detectors to reach deeper into spacefrom PhysorgThu, 23 Jun 2016, 14:21:25 UTC
- New Recipe for Gravitational Waves Calls for Early Double Starsfrom Space.comWed, 22 Jun 2016, 20:01:04 UTC
- The universe is overrun with black holes, astronomers predictfrom Science DailyWed, 22 Jun 2016, 19:31:00 UTC
- Dormant Black Hole Eats Star, Becomes X-Ray Flashlightfrom Newswise - ScinewsWed, 22 Jun 2016, 18:31:25 UTC
- Team predicts a universe crowded with black holesfrom PhysorgWed, 22 Jun 2016, 18:31:14 UTC
- Sleeping Black Hole Awakens to Devour Doomed Starfrom Space.comWed, 22 Jun 2016, 18:31:06 UTC
- 60 Black Holes And 500 Stars 'Mosh' To Form Black Hole Binary | Simulatlonfrom Space.comWed, 22 Jun 2016, 18:31:06 UTC
- Dormant black hole eats star, becomes X-ray flashlightfrom PhysorgWed, 22 Jun 2016, 17:01:08 UTC
- Gravitational Waves Ripple Through Scientific Communityfrom Space.comWed, 22 Jun 2016, 11:30:59 UTC
- Atomic clocks in space could detect gravitational wavesfrom Physics WorldMon, 20 Jun 2016, 18:10:58 UTC
- 'New Era' of Astrophysics: Why Gravitational Waves Are So Importantfrom Space.comMon, 20 Jun 2016, 12:10:57 UTC
- LIGO's Gravitational Waves Discovery Enthusiastically Explained By Space Reporter | Videofrom Space.comFri, 17 Jun 2016, 15:51:02 UTC
- Gravitational waves found again: here's how they could whisper the universe's secretsfrom PhysorgFri, 17 Jun 2016, 13:01:01 UTC
- Second detection heralds the era of gravitational wave astronomyfrom PhysorgFri, 17 Jun 2016, 11:31:02 UTC
- [In Depth] LIGO detects another black hole crashfrom Science NOWThu, 16 Jun 2016, 18:51:00 UTC
- LIGO detects second black-hole mergerfrom Physics WorldThu, 16 Jun 2016, 5:01:21 UTC
- New Gravitational Wave Observed From Second Pair of Black Holesfrom Newswise - ScinewsWed, 15 Jun 2016, 20:41:21 UTC
- Scientists Detect Second Pair of Colliding Black Holesfrom Newswise - ScinewsWed, 15 Jun 2016, 20:41:03 UTC
- Einstein's encore: Scientists detect 2nd gravitational wavefrom CBSNews - ScienceWed, 15 Jun 2016, 20:01:10 UTC
- Gravitational Wave Detector Finds Double Colliding Black Holes — Again (Woot!)from Live ScienceWed, 15 Jun 2016, 19:31:06 UTC
- For second time, astronomers detect gravitational wavesfrom UPIWed, 15 Jun 2016, 19:01:06 UTC
- Did gravitational wave detector find dark matter?from Science DailyWed, 15 Jun 2016, 18:41:01 UTC
- Again! Gravitational Waves Detected From 2nd Black Hole Collision | Videofrom Live ScienceWed, 15 Jun 2016, 18:31:17 UTC
- Gravitational waves detected from more colliding black holesfrom CBC: Technology & ScienceWed, 15 Jun 2016, 18:10:59 UTC
- Einstein's theory confirmed again: Scientists detect gravitational waves for second timefrom LA Times - ScienceWed, 15 Jun 2016, 18:01:16 UTC
- Gravitational Wave Observatory Finds More Colliding Black Holesfrom Scientific AmericanWed, 15 Jun 2016, 18:01:11 UTC
- LIGO detects whispers of another black-hole mergerfrom News @ NatureWed, 15 Jun 2016, 18:00:58 UTC
- Gravitational Waves Detected From Second Pair of Colliding Black Holesfrom Newswise - ScinewsWed, 15 Jun 2016, 17:41:07 UTC
- Einstein 2.0: gravitational waves detected for a second timefrom Reuters:ScienceWed, 15 Jun 2016, 17:40:55 UTC
- Gravitational waves detected from second pair of colliding black holesfrom PhysorgWed, 15 Jun 2016, 17:31:20 UTC
- For second time, LIGO detects gravitational wavesfrom MIT ResearchWed, 15 Jun 2016, 17:31:18 UTC
- More gravitational waves detectedfrom BBC News: Science & NatureWed, 15 Jun 2016, 17:31:12 UTC
- Gravitational Wave Detector Finds Double Colliding Black Holes — Again (Woot!)from Space.comWed, 15 Jun 2016, 17:31:01 UTC
- Again! Gravitational Waves Detected From 2nd Black Hole Collision | Videofrom Space.comWed, 15 Jun 2016, 17:31:01 UTC
- Did gravitational wave detector find dark matter?from PhysorgWed, 15 Jun 2016, 17:01:35 UTC
- Did Gravitational Wave Detector Find Dark Matter?from Newswise - ScinewsWed, 15 Jun 2016, 15:51:13 UTC
- Black holes and the prospects for measuring gravitational wavesfrom Science DailyWed, 15 Jun 2016, 15:51:10 UTC