Scientists detect second pair of colliding black holes
The new window onto the universe just opened a little bit wider. For the second time in history, an international team of scientists and engineers, including Northwestern University astrophysicists and a laser scientist, has detected gravitational waves -- ripples in the fabric of spacetime -- and a pair of colliding black holes. LIGO's first detection of gravitational waves and merging black holes occurred Sept. 14, 2015 -- an event that made headlines worldwide, confirming a major prediction of Albert Einstein's 1915 general theory of relativity. The field of gravitational-wave astronomy was born with a little chirp "heard" on Earth that forever changed the way we see the universe.
The second detection occurred at 03:38:53 UTC (Coordinated Universal Time) Dec. 26, 2015, and is known as the "Boxing Day event" (after the holiday celebrated in the U.K.). Both of the twin, U.S.-based Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors recorded the gravitational waves.
Gravitational waves carry information about the origins of black holes and about the nature of gravity that cannot otherwise be obtained. Physicists have concluded that these gravitational waves were produced during the final moments of the merger of two black holes -- 14 and 8 times the mass of the sun -- to produce a single, more massive spinning black hole 21 times the mass of the sun. (In comparison, the black holes detected Sept. 14, 2015, were 36 and 29 times the sun's mass, merging into a black hole of 62 solar masses.)
This time, the gravitational waves released by the violent black hole merger resulted in a longer signal, or chirp, providing more data. The new chirp lasted one second; the Sept. 14 chirp lasted just one-fifth of a second. The higher-frequency gravitational waves from the lower-mass black holes better spread across the LIGO detectors' sweet spot of sensitivity.
Gravitational waves are not sound waves, but researchers have converted the gravitational wave's oscillation and frequency to a sound wave with the same frequency, producing a "chirp" people can hear.
The discovery, accepted for publication in the journal Physical Review Letters, was made by the international LIGO Scientific Collaboration (which includes the GEO Collaboration and the Australian Consortium for Interferometric Gravitational Astronomy) and the Virgo Collaboration using data from the two LIGO detectors.
Northwestern alumnus David Reitze, now at Caltech and the executive director of the LIGO Laboratory, was one of three scientific leaders to announce the discovery today (June 15) at a media briefing at the summer meeting of the American Astronomical Society (AAS) in San Diego. Kalogera was present at the media briefing.
Scientists now have a small population of black holes from which to learn more about the universe. As Advanced LIGO becomes more and more sensitive, the number of detected black holes will only grow, producing a broad mass spectrum of black holes in nature.
"Scientifically, these black holes are important because it shows binary black holes exist as a population, with a range of masses, forming from a range of different stars," said Vicky Kalogera, director of Northwestern's Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and the Erastus O. Haven Professor of physics and astronomy in the Weinberg College of Arts and Sciences.
Kalogera, a member of the LIGO Scientific Collaboration (LSC), is attending the AAS meeting and was present at the media briefing.
"We expect black holes with a range of masses, which we now are seeing, showing us that black holes form ubiquitously in the universe," said Kalogera, an expert in black-hole formation in binary systems and in LIGO data analysis. "This second detection also proves the first was not a fluke -- the gravitational waves truly came from cosmic sources. Multiple events are exactly what we needed to be convinced beyond any doubt."
Kalogera leads Northwestern's LSC group, which includes Shane L. Larson, research associate professor of physics and astronomy at Northwestern and an astronomer at the Adler Planetarium in Chicago, and Selim Shahriar, professor of electrical engineering and computer science at Northwestern's McCormick School of Engineering.
Kalogera's and Larson's contributions to the new discovery include making predictions for anticipated detections, interpreting the astrophysics, analyzing the data and characterizing the LIGO detectors. Shahriar, a laser scientist, leads the experimental portion of Northwestern's LSC group and is working to find means to improve the detectors' sensitivity by a factor of 20. Three postdoctoral fellows, five graduate students and approximately 20 undergraduate students also are involved in the Nothwestern research.
"It is very significant that these black holes were much less massive than those in the first detection," said Gabriela Gonzalez, spokesperson of the LIGO Scientific Collaboration and professor of physics and astronomy at Louisiana State University. She joined Reitze in announcing the discovery at AAS.
"Because of their lighter mass, they spent more time -- about one second -- in the sensitive band of the detectors. It is a promising start to mapping the populations of black holes in our universe," she said.
During the merger, which occurred approximately 1.4 billion years ago, a quantity of energy roughly equivalent to the mass of the sun was converted into gravitational waves. The detected signal comes from the last 27 orbits of the black holes before their merger. Based on the arrival time of the signals -- with the Livingston detector measuring the waves 1.1 milliseconds before the Hanford detector-- the position of the source in the sky can be roughly determined.
Source: Northwestern University
Articles on the same topic
- Using gravitational waves to catch runaway black holesThu, 30 Jun 2016, 13:29:12 UTC
- RIT professors create new method for identifying black holesWed, 29 Jun 2016, 19:43:43 UTC
- Seeds of black holes could be revealed by gravitational waves detected in spaceSun, 26 Jun 2016, 23:32:39 UTC
- Simulations foresee hordes of colliding black holes in LIGO's futureFri, 24 Jun 2016, 13:04:41 UTC
- Doubled sensitivity could allow gravitational wave detectors to reach deeper into spaceThu, 23 Jun 2016, 14:26:11 UTC
- X-ray echoes of a shredded star provide close-up of 'killer' black holeWed, 22 Jun 2016, 18:38:41 UTC
- Dormant black hole eats star, becomes X-ray flashlightWed, 22 Jun 2016, 18:38:28 UTC
- RIT professor predicts a universe crowded with black holesWed, 22 Jun 2016, 18:12:32 UTC
- Gravitational waves detected from second pair of colliding black holesThu, 16 Jun 2016, 16:56:23 UTC
- Gravitational waves caught againThu, 16 Jun 2016, 13:55:32 UTC
- New gravitational wave observed from second pair of black holesWed, 15 Jun 2016, 18:35:47 UTC
- Gravitational waves detected from second pair of colliding black holesWed, 15 Jun 2016, 17:34:50 UTC
- Gravitational waves detected for a second timeWed, 15 Jun 2016, 17:34:36 UTC
- Did gravitational wave detector find dark matter?Wed, 15 Jun 2016, 17:08:32 UTC
Other sources
- RIT Professors Create New Method for Identifying Black Holesfrom Newswise - ScinewsThu, 30 Jun 2016, 17:21:55 UTC
- Using gravitational waves to catch runaway black holesfrom Science BlogThu, 30 Jun 2016, 16:11:01 UTC
- Using gravitational waves to catch runaway black holesfrom PhysorgThu, 30 Jun 2016, 14:21:08 UTC
- Researchers create new method for identifying black holesfrom Science DailyThu, 30 Jun 2016, 13:51:18 UTC
- Researchers create new method for identifying black holesfrom PhysorgWed, 29 Jun 2016, 20:11:00 UTC
- LIGO Discoveries Will Help Scientists Run Stellar Autopsies on Colliding Black Holesfrom Scientific AmericanWed, 29 Jun 2016, 11:31:26 UTC
- Gravitational physics poised for new era of discoveryfrom PhysorgTue, 28 Jun 2016, 10:41:11 UTC
- Seeds of Black Holes Could Be Revealed by Gravitational Waves Detected in Spacefrom Newswise - ScinewsMon, 27 Jun 2016, 18:01:07 UTC
- Seeds of black holes could be revealed by gravitational waves detected in spacefrom Science DailyMon, 27 Jun 2016, 15:11:08 UTC
- Seeds of black holes could be revealed by gravitational waves detected in spacefrom Science BlogMon, 27 Jun 2016, 13:01:00 UTC
- Seeds of black holes could be revealed by gravitational waves detected in spacefrom PhysorgMon, 27 Jun 2016, 8:01:32 UTC
- Simulations Foresee Hordes of Colliding Black Holes in Gravitational Wave Observatory's Futurefrom Newswise - ScinewsFri, 24 Jun 2016, 8:51:09 UTC
- How LIGO's merging black holes formed from two massive starsfrom Physics WorldFri, 24 Jun 2016, 3:41:02 UTC
- Black Hole Crashes Warp Spacetime 1,000 Times Yearlyfrom Space.comThu, 23 Jun 2016, 17:21:11 UTC
- Doubled sensitivity could allow gravitational wave detectors to reach deeper into spacefrom Science DailyThu, 23 Jun 2016, 15:51:51 UTC
- Doubled sensitivity could allow gravitational wave detectors to reach deeper into spacefrom PhysorgThu, 23 Jun 2016, 14:21:25 UTC
- New Recipe for Gravitational Waves Calls for Early Double Starsfrom Space.comWed, 22 Jun 2016, 20:01:04 UTC
- The universe is overrun with black holes, astronomers predictfrom Science DailyWed, 22 Jun 2016, 19:31:00 UTC
- Dormant Black Hole Eats Star, Becomes X-Ray Flashlightfrom Newswise - ScinewsWed, 22 Jun 2016, 18:31:25 UTC
- Team predicts a universe crowded with black holesfrom PhysorgWed, 22 Jun 2016, 18:31:14 UTC
- Sleeping Black Hole Awakens to Devour Doomed Starfrom Space.comWed, 22 Jun 2016, 18:31:06 UTC
- 60 Black Holes And 500 Stars 'Mosh' To Form Black Hole Binary | Simulatlonfrom Space.comWed, 22 Jun 2016, 18:31:06 UTC
- Dormant black hole eats star, becomes X-ray flashlightfrom PhysorgWed, 22 Jun 2016, 17:01:08 UTC
- Gravitational Waves Ripple Through Scientific Communityfrom Space.comWed, 22 Jun 2016, 11:30:59 UTC
- Atomic clocks in space could detect gravitational wavesfrom Physics WorldMon, 20 Jun 2016, 18:10:58 UTC
- 'New Era' of Astrophysics: Why Gravitational Waves Are So Importantfrom Space.comMon, 20 Jun 2016, 12:10:57 UTC
- LIGO's Gravitational Waves Discovery Enthusiastically Explained By Space Reporter | Videofrom Space.comFri, 17 Jun 2016, 15:51:02 UTC
- Gravitational waves found again: here's how they could whisper the universe's secretsfrom PhysorgFri, 17 Jun 2016, 13:01:01 UTC
- Second detection heralds the era of gravitational wave astronomyfrom PhysorgFri, 17 Jun 2016, 11:31:02 UTC
- [In Depth] LIGO detects another black hole crashfrom Science NOWThu, 16 Jun 2016, 18:51:00 UTC
- LIGO detects second black-hole mergerfrom Physics WorldThu, 16 Jun 2016, 5:01:21 UTC
- New Gravitational Wave Observed From Second Pair of Black Holesfrom Newswise - ScinewsWed, 15 Jun 2016, 20:41:21 UTC
- Scientists Detect Second Pair of Colliding Black Holesfrom Newswise - ScinewsWed, 15 Jun 2016, 20:41:03 UTC
- Einstein's encore: Scientists detect 2nd gravitational wavefrom CBSNews - ScienceWed, 15 Jun 2016, 20:01:10 UTC
- Gravitational Wave Detector Finds Double Colliding Black Holes — Again (Woot!)from Live ScienceWed, 15 Jun 2016, 19:31:06 UTC
- For second time, astronomers detect gravitational wavesfrom UPIWed, 15 Jun 2016, 19:01:06 UTC
- Did gravitational wave detector find dark matter?from Science DailyWed, 15 Jun 2016, 18:41:01 UTC
- Again! Gravitational Waves Detected From 2nd Black Hole Collision | Videofrom Live ScienceWed, 15 Jun 2016, 18:31:17 UTC
- Gravitational waves detected from more colliding black holesfrom CBC: Technology & ScienceWed, 15 Jun 2016, 18:10:59 UTC
- Einstein's theory confirmed again: Scientists detect gravitational waves for second timefrom LA Times - ScienceWed, 15 Jun 2016, 18:01:16 UTC
- Gravitational Wave Observatory Finds More Colliding Black Holesfrom Scientific AmericanWed, 15 Jun 2016, 18:01:11 UTC
- LIGO detects whispers of another black-hole mergerfrom News @ NatureWed, 15 Jun 2016, 18:00:58 UTC
- Gravitational Waves Detected From Second Pair of Colliding Black Holesfrom Newswise - ScinewsWed, 15 Jun 2016, 17:41:07 UTC
- Einstein 2.0: gravitational waves detected for a second timefrom Reuters:ScienceWed, 15 Jun 2016, 17:40:55 UTC
- Gravitational waves detected from second pair of colliding black holesfrom PhysorgWed, 15 Jun 2016, 17:31:20 UTC
- For second time, LIGO detects gravitational wavesfrom MIT ResearchWed, 15 Jun 2016, 17:31:18 UTC
- More gravitational waves detectedfrom BBC News: Science & NatureWed, 15 Jun 2016, 17:31:12 UTC
- Gravitational Wave Detector Finds Double Colliding Black Holes — Again (Woot!)from Space.comWed, 15 Jun 2016, 17:31:01 UTC
- Again! Gravitational Waves Detected From 2nd Black Hole Collision | Videofrom Space.comWed, 15 Jun 2016, 17:31:01 UTC
- Did gravitational wave detector find dark matter?from PhysorgWed, 15 Jun 2016, 17:01:35 UTC
- Did Gravitational Wave Detector Find Dark Matter?from Newswise - ScinewsWed, 15 Jun 2016, 15:51:13 UTC
- Black holes and the prospects for measuring gravitational wavesfrom Science DailyWed, 15 Jun 2016, 15:51:10 UTC