New microfluidic device offers means for studying electric field cancer therapy
Researchers at MIT’s research center in Singapore have developed a new microfluidic device that tests the effects of electric fields on cancer cells. They observed that a range of low-intensity, middle-frequency electric fields effectively stopped breast and lung cancer cells from growing and spreading, while having no adverse effect on neighboring healthy cells. The device, about the size of a U.S. dollar coin, is designed to help scientists narrow in on safe ranges of electric fields to noninvasively treat breast, lung, and other forms of cancer. The results are published online in Scientific Reports. The paper’s co-authors include Roger Kamm, the Cecil and Ida Green Distinguished Professor of Mechanical and Biological Engineering at MIT, as well as research scientists Andrea Pavesi and Giulia Adriani, postdoc Majid Ebrahimi Warkiani, and student Andy Tay of the Singapore-MIT Alliance for Research and Technology (SMART). Senior research officer Wei Hseun Yeap and associate professor Siew Cheng...