New paradigm for cell-specific gene delivery

Monday, June 23, 2008 - 01:14 in Biology & Nature

Researchers from Northwestern University and Texas A & M University have discovered a new way to limit gene transfer and expression to specific tissues in animals. In studies to determine how plasmids enter the nuclei of non-dividing cells, the group previously identified a region of a smooth muscle cell-specific promoter that was able to mediate nuclear targeting of any plasmid carrying this sequence uniquely in cultured smooth muscle cells but in no other cell type. In their current study to appear in the July 08 issue of Experimental Biology and Medicine, the team, led by Drs. David Dean and Jennifer Young from the Department of Medicine at Northwestern University, in collaboration with Warren Zimmer from Texas A & M University, now demonstrate that such restriction of nuclear entry using this specific DNA sequence can be used in blood vessels of living animals to direct gene transfer and expression specifically to smooth muscle cells. They have also developed a novel gene delivery approach for the vasculature that uses an electric field to transiently permeabilize the plasma membrane of cells to allow entry of DNA. Thus, this work establishes the control of nuclear entry of gene therapy vectors as a novel approach to target genes and gene expression to desired cell types in the body.

Read the whole article on Biology News Net

More from Biology News Net

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net