Timing is not only ticking: Researchers discover that a Doppler effect influences segmentation

Monday, July 14, 2014 - 12:20 in Biology & Nature

Many animals exhibit segmental patterns that manifest themselves during development. One classical example is the sequential and rhythmic formation the segmental precursors of the backbone, a process that has been linked to the ticking of an oscillator in the embryo – the "segmentation clock". Until now, this patterning process was thought to be determined simply by the time scale of genetic oscillations that periodically trigger new segment formation. However, this week in the journal Science, Max Planck researchers suggest a more nuanced control over the timing of segmentation. Their findings show that the rhythm of segmentation is influenced by a Doppler effect that arises from gene expression waves occurring in a shortening embryonic tissue. They paint a potentially revolutionary picture of the process of developmental segmentation, one controlled by not only the time scale of genetic oscillations, but also by changes in oscillation profile and tissue shortening.

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net