Researchers find a way to extend life and improve performance of fuel cell electrodes
Researchers at MIT have developed a practical and physically-based way of treating the surface of materials called perovskite oxides, to make them more durable and improve their performance. These materials are promising candidates to serve as electrodes in energy-conversion devices such as fuel cells and electrolyzers. This surface treatment could solve one of the major challenges that has hindered widespread deployment of fuel cell technology that, when operated reversibly, can present a promising alternative to batteries for renewable-energy storage. The new findings are being reported today in the journal Nature Materials, in a paper by MIT Associate Professor Bilge Yildiz of the departments of Nuclear Science and Engineering and Materials Science and Engineering, former MIT postdoc Nikolai Tsvetkov, graduate students Qiyang Lu and Lixin Sun, and Ethan Crumlin of the Lawrence Berkeley National Laboratory. Perovskites have become a bustling area of research in recent years, with potential applications in areas ranging from...