Qubits with staying power

Thursday, January 29, 2015 - 13:50 in Physics & Chemistry

Quantum computers are experimental devices that promise exponential speedups on some computational problems. Where a bit in a classical computer can represent either a 0 or a 1, a quantum bit, or qubit, can represent 0 and 1 simultaneously, letting quantum computers explore multiple problem solutions in parallel. But such “superpositions” of quantum states are, in practice, difficult to maintain. In a paper appearing this week in Nature Communications, MIT researchers and colleagues at Brookhaven National Laboratory and the synthetic-diamond company Element Six describe a new design that in experiments extended the superposition time of a promising type of qubit a hundredfold. In the long term, the work could lead toward practical quantum computers. But in the shorter term, it could enable the indefinite extension of quantum-secured communication links, a commercial application of quantum information technology that currently has a range of less than 100 miles. The researchers’ qubit design employs nitrogen atoms...

Read the whole article on MIT Research

More from MIT Research

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net