New analysis explains collagen’s force
Research combining experimental work and detailed molecular simulations has revealed, for the first time, the complex role that water plays in collagen — a protein that is a component of tendons, bone, skin and other structural tissues in the body. The new analysis reveals an important mechanism that had never been observed before: Adding even small amounts of water to, or removing water from, collagen in tendons can generate surprisingly strong forces, as much as 300 times stronger than the forces generated by muscles. The findings are reported this week in the journal Nature Communications by researchers at MIT and the Max Planck Institute for Colloids and Interfaces in Germany. “We don’t really know the physiological role of water” in the human body’s collagen-based tissues, explains Professor Markus Buehler, head of MIT’s Department of Civil and Environmental Engineering and a co-author of the paper. “Here we show that it can develop significant...