Two-dimensional materials for ultrascaled field-effect transistors
With the increasing miniaturization of electronic components, researchers are struggling with undesirable side effects: In the case of nanometer-scale transistors made of conventional materials such as silicon, quantum effects occur that impair their functionality. One of these quantum effects, for example, is additional leakage currents, i.e. currents that flow "astray" and not via the conductor provided between the source and drain contacts. It is therefore believed that Moore's scaling law, which states that the number of integrated circuits per unit area doubles every 12-18 months, will reach its limits in the near future because of the increasing challenges associated with the miniaturization of their active components. This ultimately means that the currently manufactured silicon-based transistors—called FinFETs and equipping almost every supercomputer—can no longer be made arbitrarily smaller due to quantum effects.