Controlling ice formation on gradient wettability surfaces for high-performance bioinspired materials

Thursday, August 6, 2020 - 11:30 in Physics & Chemistry

Ice-templating is a powerful technique to construct biological materials using ice nucleation and growth to obtain frozen material architectures, but scientists have been unable to control these two factors with effective methods. In a new report on Science Advances, Nifang Zhao and a team of scientists in chemical and biological engineering at Zhejiang University in China, demonstrated successive ice nucleation and preferential growth by introducing a wettability gradient on a cold finger (a laboratory device used to generate a localized cold surface). The work highlighted the ability to harness the rich designability of surface wettability patterns to engineer high-performance bulk materials with bioinspired complex architectures.

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net