Biomechanical analyses and computer simulations reveal the Venus flytrap snapping mechanisms

Tuesday, June 23, 2020 - 13:11 in Biology & Nature

The Venus flytrap (Dionaea muscipula) takes only 100 milliseconds to trap its prey. Once their leaves, which have been transformed into snap traps, have closed, insects can no longer escape. Using biomechanical experiments and virtual Venus flytraps a team from Freiburg Botanical Garden and the University of Stuttgart has analyzed in detail how the lobes of the trap move. Freiburg biologists Dr. Anna Westermeier, Max Mylo, Prof. Dr. Thomas Speck and Dr. Simon Poppinga and Stuttgart structural engineer Renate Sachse and Prof. Dr. Manfred Bischoff show that the trap of the carnivorous plant is under mechanical prestress. In addition, its three tissue layers of each lobe have to deform according to a special pattern. The team has published its results in the journal Proceedings of the National Academy of Sciences.

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net