Why mechanical tension causes some crystals to jump, while others crumble

Thursday, January 8, 2015 - 07:00 in Physics & Chemistry

Crystals are not as stationary as you might think. A crystal of an organometallic compound containing palladium, for example, downright jumps from a hotplate once it reaches certain temperature. An international team of scientists, including researchers from the Max Planck Institute for Solid State Research in Stuttgart, has now discovered the force that makes the material jump. According to their findings, the material's structure changes when the temperature ranges between 70 and 80 degrees Celsius. First there is a rise in mechanical tension, which is then discharged so rapidly that the material leaps into the air. This thermosalient effect could potentially be applied in artificial muscles and actuators. However, the tension that arises during the structural transformation can also pulverise crystals. This phenomenon, which could make chemical reactions highly efficient, was elucidated in detail by the Stuttgart-based researchers in a separate study.

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net