Copper fields: Quantum criticality in high-temperature cuprate superconductors

Tuesday, June 19, 2012 - 08:31 in Physics & Chemistry

(Phys.org) -- Superconductivity is a complex phenomenon that is considerably more intricate than many casual observers realize. This caveat applies equally to the subset of this research known as high-temperature superconductivity – which, it should be noted, is described as such only in relation to the near absolute zero temperature range at which conventional superconductors are found, and furthermore is not to be confused with the loftier goal of room-temperature superconductivity. That said, certain aspects of electronic properties in high-temperature copper oxide, or cuprate, superconductors imply that the absence of conventional metallic Fermi liquid behavior – the standard model of electrons in metals – and the presence of unconventional superconductivity are closely related. While such a partnership often occurs proximate to what is known as a quantum critical point (a special class of continuous phase transition that takes place at the absolute zero of temperature in a material where the...

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net