New technique provides detailed views of metals’ crystal structure
Researchers at MIT and elsewhere have developed a new combination of methods that can provide detailed information about the microstructure of polycrystalline metals. Such materials — composed of a random matrix of multiple small crystals rather than one single large crystal — are widely used for such applications as nuclear reactors, civil infrastructure, and aircraft. However understanding the details of their crystal structure and the boundaries between the crystal areas has been difficult. The new findings are published in the journal Nature Computational Materials, in a paper by Matteo Seita, an MIT postdoc; Michael Demkowicz, a professor of materials science and engineering; Christopher Schuh, the Danae and Vasilis Salapatas Professor of Metallurgy, and five others. “This is a unique combination of different technologies,” Seita explains. The new approach he and the team developed addresses “one of the most common problems in materials science: How do we quantify the characteristics of materials in a...