Speedy terahertz-based system could detect explosives

Friday, May 20, 2016 - 09:30 in Physics & Chemistry

Terahertz spectroscopy, which uses the band of electromagnetic radiation between microwaves and infrared light, is a promising security technology because it can extract the spectroscopic “fingerprints” of a wide range of materials, including chemicals used in explosives. But traditional terahertz spectroscopy requires a radiation source that’s heavy and about the size of a large suitcase, and it takes 15 to 30 minutes to analyze a single sample, rendering it impractical for most applications. In the latest issue of the journal Optica, researchers from MIT’s Research Laboratory of Electronics and their colleagues present a new terahertz spectroscopy system that uses a quantum cascade laser, a source of terahertz radiation that’s the size of a computer chip. The system can extract a material’s spectroscopic signature in just 100 microseconds. The device is so efficient because it emits terahertz radiation in what’s known as a “frequency comb,” meaning a range of frequencies that are perfectly evenly...

Read the whole article on MIT Research

More from MIT Research

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net