Faster, smaller, more informative

Tuesday, May 12, 2015 - 04:30 in Physics & Chemistry

A new technique invented at MIT can measure the relative positions of tiny particles as they flow through a fluidic channel, potentially offering an easy way to monitor the assembly of nanoparticles, or to study how mass is distributed within a cell. With further advancements, this technology has the potential to resolve the shape of objects in flow as small as viruses, the researchers say. The new technique, described in the May 12 issue of Nature Communications, uses a device first developed by MIT’s Scott Manalis and colleagues in 2007. That device, known as a suspended microchannel resonator (SMR),  measures particles’ masses as they flow through a narrow channel. The original mass sensor consists of a fluid-filled microchannel etched in a tiny silicon cantilever that vibrates inside a vacuum cavity. As cells or particles flow through the channel, one at a time, their mass slightly alters the cantilever’s vibration frequency. The masses of...

Read the whole article on MIT Research

More from MIT Research

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net