Moving microfluidics from the lab bench to the factory floor

Thursday, March 29, 2012 - 03:31 in Physics & Chemistry

In the not-too-distant future, plastic chips the size of flash cards may quickly and accurately diagnose diseases such as AIDS and cancer, as well as detect toxins and pathogens in the environment. Such lab-on-a-chip technology — known as microfluidics — works by flowing fluid such as blood through microscopic channels etched into a polymer’s surface. Scientists have devised ways to manipulate the flow at micro- and nanoscales to detect certain molecules or markers that signal disease. Microfluidic devices have the potential to be fast, cheap and portable diagnostic tools. But for the most part, the technology hasn’t yet made it to the marketplace. While scientists have made successful prototypes in the laboratory, microfluidic devices — particularly for clinical use — have yet to be manufactured on a wider scale. MIT's David Hardt is working to move microfluidics from the lab to the factory. Hardt heads the Center for Polymer Microfabrication...

Read the whole article on MIT Research

More from MIT Research

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net