[Report] Regulation of sugar transporter activity for antibacterial defense in Arabidopsis

Thursday, December 15, 2016 - 14:02 in Health & Medicine

Microbial pathogens strategically acquire metabolites from their hosts during infection. Here we show that the host can intervene to prevent such metabolite loss to pathogens. Phosphorylation-dependent regulation of sugar transport protein 13 (STP13) is required for antibacterial defense in the plant Arabidopsis thaliana. STP13 physically associates with the flagellin receptor flagellin-sensitive 2 (FLS2) and its co-receptor BRASSINOSTEROID INSENSITIVE 1–associated receptor kinase 1 (BAK1). BAK1 phosphorylates STP13 at threonine 485, which enhances its monosaccharide uptake activity to compete with bacteria for extracellular sugars. Limiting the availability of extracellular sugar deprives bacteria of an energy source and restricts virulence factor delivery. Our results reveal that control of sugar uptake, managed by regulation of a host sugar transporter, is a defense strategy deployed against microbial infection. Competition for sugar thus shapes host-pathogen interactions. Authors: Kohji Yamada, Yusuke Saijo, Hirofumi Nakagami, Yoshitaka Takano

Read the whole article on Science NOW

More from Science NOW

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net