Surprising electronic disorder in a copper oxide-based ceramic

Monday, January 28, 2019 - 12:10 in Physics & Chemistry

Cuprates, a class of copper-oxide ceramics that share a common building block of copper and oxygen atoms in a flat square lattice, have been studied for their ability to be superconducting at extremely high temperatures. In their pristine state, however, they are a special kind of insulator (a material that does not readily conduct electricity) known as a Mott insulator.  When electrical charge carriers — either electrons or the lack of electrons, known as "holes" — are added to an insulator in a process called doping, the insulator may become a metal, which readily conducts electricity, or a semiconductor, which can conduct electricity depending on the environment. Cuprates, however, behave neither like a normal insulator nor like a normal metal because of strong interactions between their electrons. To avoid the large energy cost arising from these interactions, the electrons spontaneously organize in a collective state where the motion of each particle...

Read the whole article on MIT Research

More from MIT Research

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net