Deep-learning technique reveals “invisible” objects in the dark

Wednesday, December 12, 2018 - 00:30 in Physics & Chemistry

Small imperfections in a wine glass or tiny creases in a contact lens can be tricky to make out, even in good light. In almost total darkness, images of such transparent features or objects are nearly impossible to decipher. But now, engineers at MIT have developed a technique that can reveal these “invisible” objects, in the dark. In a study published today in Physical Review Letters, the researchers reconstructed transparent objects from images of those objects, taken in almost pitch-black conditions. They did this using a “deep neural network,” a machine-learning technique that involves training a computer to associate certain inputs with specific outputs — in this case, dark, grainy images of transparent objects and the objects themselves. The team trained a computer to recognize more than 10,000 transparent glass-like etchings, based on extremely grainy images of those patterns. The images were taken in very low lighting conditions, with about one photon...

Read the whole article on MIT Research

More from MIT Research

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net