Exelon Generation supports research on advanced nuclear fuel cladding coatings
Assistant professor of nuclear science and engineering Michael Short and collaborators — professors Bilge Yildiz, Matteo Bucci, and Evelyn Wang, as well as the MIT Nuclear Reactor Laboratory and the Westinghouse Electric Company — have received funding from Exelon Generation to support research which could transform the performance of the fuel cladding in light water reactors (LWRs). Four known issues can impact the safe and reliable operation of LWR fuel cladding. They include fretting and wear from grid-to-rod-fretting and foreign material; the buildup of porous corrosion deposits; hydrogen absorption; and boiling crisis. Fretting can wear through the fuel cladding, while deposits and hydrogen absorption can lead to corrosion-based fuel failure, respectively. Finally, a “boiling crisis” is when the normally bubbly mode of coolant boiling, called sub-cooled nucleate boiling, transitions to film boiling, insulating the fuel with a layer of steam and worsening heat transfer. All four issues can and have caused failure...