Electrons break rotational symmetry in exotic low-temp superconductor

Tuesday, May 19, 2020 - 10:10 in Physics & Chemistry

Scientists have discovered that the transport of electronic charge in a metallic superconductor containing strontium, ruthenium, and oxygen breaks the rotational symmetry of the underlying crystal lattice. The strontium ruthenate crystal has fourfold rotational symmetry like a square, meaning that it looks identical when turned by 90 degrees (four times to equal a complete 360-degree rotation). However, the electrical resistivity has twofold (180-degree) rotational symmetry like a rectangle.

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net