How interstitial ordering affects high-strength steels

Thursday, May 14, 2020 - 07:40 in Physics & Chemistry

The performance of materials is strongly influenced by their alloying elements: Adding elements beyond the basic composition of the alloy can strongly influence the properties and performance of it. In practice, it is not only important which elements are added, but also to which amounts and how they order in the host lattice. For the fundamental basic composition of any steel—iron and carbon—the concentration and ordering of carbon atoms and their interaction with the iron host lattice in martensitic steels was analyzed by a team of scientists from the Max-Planck-Institut für Eisenforschung (MPIE) and the Ruhr-Universität Bochum (RUB). The scientists examined the mechanisms of collective interstitial ordering in Fe-C steels and determined how anharmonicity and segregation affect the ordering mechanism and consequently, the material's performance. Their recent findings were published in Nature Materials.

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net