A robust, sensitive thin-film X-ray detector using 2-D layered perovskite diodes

Friday, April 17, 2020 - 09:40 in Physics & Chemistry

In a new report on Science Advances, Hsinhan Tsai and a research team in materials, nanotechnology, nuclear engineering and X-ray science at the Los Alamos National Laboratory and the Argonne National Laboratory in the U.S. demonstrated a new thin film X-ray detector prototype. The set up contained highly crystalline two-dimensional (2-D) Ruddlesden-Popper (RP) phase layered perovskites and maintained a high diode resistivity of 1012 Ohm.cm, leading to a high X-ray detecting sensitivity of up to 0.276 C Gyair−1 cm−3. To promise revolutionary medical imaging with minimal health risks. The team collected the signals using the built-in potential and the results underpin the operation of existing robust primary photocurrent devices. The detectors generated substantial X-ray photon-induced open-circuit voltages as an alternate detecting mechanism. The work suggests a new generation of X-ray detectors based on low-cost, layered perovskite thin films for future X-ray imaging technologies.

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net