Ghost imaging in the time domain could revolutionize the imaging of disturbance-sensitive signals

Tuesday, February 9, 2016 - 09:22 in Physics & Chemistry

The conventional approach to decode information carried by ultrafast optical signals that propagate in optical fibers employs fast detectors that convert the temporal intensity variations of a light beam into an RF electrical signal. This technique is at the core of ultrafast optical communications, enabling the transmission of information at speeds exceeding several billion bits per second. A team led by Professor Goëry Genty from the Optics Laboratory at the Tampere University of Technology in collaboration with Professor Ari T. Friberg from the University of Eastern Finland now demonstrates how ultrafast pulses that carry information over durations shorter than 1 billionth of a second can be detected without actually 'seeing' those pulses directly. The results were obtained within the framework of the 'Temporal correlation imaging' project funded by the Academy of Finland.

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net