Freedom of electrons is short-lived
During the interaction of an intense extreme-ultraviolet (XUV) laser pulse with a cluster, many ions and free electrons are created, leading to the formation of a nanoscale plasma. In experiments using XUV/X-ray free electron lasers (FELs) it was previously demonstrated that only a small fraction of these electrons can leave the cluster, while the majority of the electrons remain trapped within the cluster and may therefore recombine with ions. In a novel approach using a laboratory-scale XUV source, we have now measured the time scale of these electron-ion recombination processes leading to a strong formation of excited atoms, which is in the picosecond range. The results show that it is even possible to follow the laser-induced cluster expansion process up to nanosecond times.