A brake for spinning molecules
Chemical reactions taking place in outer space can now be more easily studied on Earth. An international team of researchers from the University of Aarhus in Denmark and the Max Planck Institute for Nuclear Physics in Heidelberg, discovered an efficient and versatile way of braking the rotation of molecular ions. The spinning speed of these ions is related to a rotational temperature. Using an extremely tenuous, cooled gas, the researchers have lowered this temperature to about -265 °C. From this record-low value, the researchers could vary the temperature up to -210 °C in a controlled manner. Exact control of the rotation of molecules is not only of importance for studying astrochemical processes, but could also be exploited to shed more light on the quantum mechanical aspects of photosynthesis or to use molecular ions for quantum information technology.