How some battery materials expand without cracking

Tuesday, April 11, 2017 - 23:31 in Physics & Chemistry

When you charge a battery, or when you use it, it’s not just electricity but also matter that moves around inside. Ions, which are atoms or molecules that have an electric charge, travel from one of the battery’s electrodes to the other, making the electrodes shrink and swell. In fact, it’s been a longstanding mystery why fairly brittle electrode materials don’t crack under the strain of these expansion and contraction cycles. The answer may have finally been found. A team of researchers at MIT, the University of Southern Denmark, Rice University, and Argonne National Laboratory has determined that the secret is in the electrodes’ molecular structure. While the electrode materials are normally crystalline, with all their atoms neatly arranged in a regular, repetitive array, when they undergo the charging or discharging process, they are transformed into a disordered, glass-like phase that can accommodate the strain of the dimensional changes. The new findings,...

Read the whole article on MIT Research

More from MIT Research

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net