Faster optimization
Optimization problems are everywhere in engineering: Balancing design tradeoffs is an optimization problem, as are scheduling and logistical planning. The theory — and sometimes the implementation — of control systems relies heavily on optimization, and so does machine learning, which has been the basis of most recent advances in artificial intelligence. This week, at the IEEE Symposium on Foundations of Computer Science, a trio of present and past MIT graduate students won a best-student-paper award for a new “cutting-plane” algorithm, a general-purpose algorithm for solving optimization problems. The algorithm improves on the running time of its most efficient predecessor, and the researchers offer some reason to think that they may have reached the theoretical limit. But they also present a new method for applying their general algorithm to specific problems, which yields huge efficiency gains — several orders of magnitude. “What we are trying to do is revive people’s interest in the general...