Ribonucleotide incorporation enables repair of chromosome breaks by nonhomologous end joining

Thursday, September 20, 2018 - 03:33 in Health & Medicine

The nonhomologous end–joining (NHEJ) pathway preserves genome stability by ligating the ends of broken chromosomes together. It employs end-processing enzymes, including polymerases, to prepare ends for ligation. We show that two such polymerases incorporate primarily ribonucleotides during NHEJ—an exception to the central dogma of molecular biology—both during repair of chromosome breaks made by Cas9 and during V(D)J recombination. Moreover, additions of ribonucleotides but not deoxynucleotides effectively promote ligation. Repair kinetics suggest that ribonucleotide-dependent first-strand ligation is followed by complementary strand repair with deoxynucleotides, then by replacement of ribonucleotides embedded in the first strand with deoxynucleotides. Our results indicate that as much as 65% of cellular NHEJ products have transiently embedded ribonucleotides, which promote flexibility in repair at the cost of more fragile intermediates.

Read the whole article on

More from

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net