Researchers work to improve mechanical stability of nanofilms

Thursday, September 13, 2012 - 10:58 in Physics & Chemistry

(Phys.org)—Read heads in hard drives, lasers in DVD players, transistors on computer chips, and many other components all contain ultrathin films of metal or semiconductor materials. Stresses arise in thin films during their manufacture. These influence the optical and magnetic properties of the components, but also cause defects in crystal lattices, and in the end, lead to component failure. As researchers in the department of Eric Mittemeijer at the Max Planck Institute for Intelligent Systems in Stuttgart have now established, enormous stresses in the films are created by a quantum-mechanical mechanism that has been unknown until now, based on an effect by the name of quantum confinement. This effect can cause stresses equivalent to one thousand times standard atmospheric pressure, dependent of thickness. Knowledge of this could be helpful in controlling the optical and mechanical properties of thin-film systems and increase their mechanical stability. Additionally, very sensitive sensors might also...

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net