New perspectives to the design of molecular cages
Monday, May 26, 2014 - 19:31
in Physics & Chemistry
Researchers report a new method of building molecular cages. The method involves the exploitation of intermolecular steric effects to control the outcome of a self-assembly reaction. Molecular cages are composed of organic molecules (ligands) which are bound to metal ions during a self-assembly process. Depending on the prevailing conditions, self-assembly processes urge to maximize the symmetry of the system and thus occupy every required metal binding site. The research group developed a method in which sterically hindered ligands are used to seemingly disrupt the self-assembly process. This new strategy allows a ligand to occupy only two of the four potential binding sites of the metal.