Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites

Thursday, October 25, 2018 - 13:40 in Physics & Chemistry

The separation of ethane from its corresponding ethylene is an important, challenging, and energy-intensive process in the chemical industry. Here we report a microporous metal-organic framework, iron(III) peroxide 2,5-dioxido-1,4-benzenedicarboxylate [Fe2(O2)(dobdc) (dobdc4–: 2,5-dioxido-1,4-benzenedicarboxylate)], with iron (Fe)–peroxo sites for the preferential binding of ethane over ethylene and thus highly selective separation of C2H6/C2H4. Neutron powder diffraction studies and theoretical calculations demonstrate the key role of Fe-peroxo sites for the recognition of ethane. The high performance of Fe2(O2)(dobdc) for the ethane/ethylene separation has been validated by gas sorption isotherms, ideal adsorbed solution theory calculations, and simulated and experimental breakthrough curves. Through a fixed-bed column packed with this porous material, polymer-grade ethylene (99.99% pure) can be straightforwardly produced from ethane/ethylene mixtures during the first adsorption cycle, demonstrating the potential of Fe2(O2)(dobdc) for this important industrial separation with a low energy cost under ambient conditions.

Read the whole article on Science NOW

More from Science NOW

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net