New, Alternative CRISPR Enzyme Could Make Genetic Edits More Precise
An animation of CRISPR-Cas9 at work Screenshot; video by McGovern Institute for Brain Research at MIT The CRISPR genetic editing technique targets a series of repeated DNA sequences found in the genetic code of all sorts of organisms, from bacteria to humans. Special enzymes can find these repeated phrases and snip the DNA strands there; the cell then naturally stitches up the damaged DNA, so the organism can keep using it. But the method still isn’t perfect—mistakes still happen more often than researchers would like. Now a team of biologists, led by researchers from the Broad Institute of MIT and Harvard, have found a tiny molecule that, when used with CRISPR, may make the editing process more precise, according to a study published last week in Cell. Most researchers editing DNA using...