Folding an acoustic vortex on a flat holographic transducer to form miniaturized selective acoustic tweezers

Thursday, April 18, 2019 - 08:40 in Physics & Chemistry

Acoustic tweezers are based on focused acoustic vortices and hold promise to precisely manipulate microorganisms and cells from the millimeter scale down to the submicron scale, without contact, and with unprecedented selectivity and trapping force. The widespread use of the technique is hindered at present by limitations to the existing systems stemming from performance, miniaturization and the inability to assimilate in compartments. In a recent study, Michael Baudoin and colleagues at the Sorbonne University and the French National Center for Scientific Research (CNRS), improved the potential of focused acoustic vortices by developing the first flat, compact and paired single electrode focalized or focused 'acoustical tweezer'.

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net