Trophic coherence explains why networks have few feedback loops and high stability

Monday, August 14, 2017 - 12:22 in Biology & Nature

(—Complexity – defined as having emergent properties or traits that are not a function of, and are therefore difficult or inherently impossible to predict from, the discrete components comprising the system – is a characteristic of complex systems at a wide range of scales (such as genes, neurons and other cells, brains, computers, language, and both natural and sociopolitical ecosystems) that comprise interconnected elements capable of self-modification via feedback loops. At the same time, there are networks (biological and otherwise) that have far fewer of these loops than might be expected – but while these low feedback loop networks are known to be display high stability, the mechanism for feedback suppression (which imparts that stability) has remained unidentified. Recently, however, scientists at University of Warwick and Imperial College London have shown that the level of feedback in complex systems is a function of trophic coherence – a property that reveals...

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net