Method enables material to carry more electrical current without resistance at a higher temperature

Thursday, October 6, 2016 - 09:02 in Physics & Chemistry

Iron-based superconductors can conduct electricity without resistance at unusually high temperatures relative to those of conventional superconductors, which must be chilled to near absolute zero (minus 459 degrees Fahrenheit) to release their superconducting powers. In addition, they're relatively easy to bend and can carry electrical current easily in different directions under high magnetic fields before superconductivity becomes suppressed. These characteristics make iron-based superconductors promising for advanced energy applications, from electric vehicles to wind turbines and medical imaging devices. However, the amount of current they can carry has been low in comparison to other superconductors. Scientists have been trying to increase this amount, but doing so has often come at the cost of degrading another key superconducting property—the critical temperature at which superconductivity emerges. 

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net