Geometric heat engine simultaneously maximizes both power and efficiency

Tuesday, May 10, 2016 - 08:30 in Physics & Chemistry

(Phys.org)—As its name suggests, a heat engine converts heat into mechanical energy that can be used to do work—for example, to power a car. Heat engines can operate either in a steady state (where heat is constantly being supplied) or in a cyclic state (where heat is added only during parts of the cycle). Over the past several years, researchers have discovered that steady state heat engines are inherently limited by a power-efficiency trade-off, meaning that their power and efficiency cannot be maximized simultaneously. Although it's not clear if the same is true for cyclic heat engines, some studies have seemed to suggest this to be the case, since operating certain models of cyclic heat engines at slower rates leads to a decrease in power but an increase in efficiency, and vice versa.

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net