When an exciton acts like a hole

Wednesday, August 27, 2014 - 05:00 in Physics & Chemistry

(Phys.org) —When is an electron hole like a quasiparticle (QP)? More specifically, what happens when a single electron hole is doped into a two-dimensional quantum antiferromagnet? Quasiparticle phenomena in such a system are predicted by theory, but have eluded observation, complicating the understanding of electron behavior in high-temperature superconducting cuprates. A team of experimenters working at the U.S. Department of Energy's (DOE's) Advanced Photon Source at Argonne National Laboratory have taken a different approach to the problem with their recent observation of an excitonic quasiparticle in strontium iridate (Sr2IrO4), a quasi-two-dimensional, spin-1/2, antiferromagnetic Mott insulator. Their work was published in Nature Communications.

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net