The dynamic cytoskeleton in bacterial cell division

Tuesday, December 10, 2013 - 12:01 in Biology & Nature

(Phys.org) —The cytoskeletal proteins of eukaryotes polymerize into self-organized patterns even as pure solutions. However, to see more complex dynamics, like filament sliding or rotation, various motor proteins and cofactors usually need to be added to the solution. The ancestral bacterial proteins of actin and tubulin, namely FtsA and FtsZ, play a key role in bacterial cell division through the formation of a cytoskeletal structure known as the "Z" ring. Researchers Martin Loose and Tim Mitchison have studied these bacterial proteins in solution, along with bits of reconstituted membrane, and found that they support complex dynamics in the absence of any motor proteins. In their recent paper in Nature Cell Biology, they describe how these behaviors can spontaneously emerge.

Read the whole article on Physorg

More from Physorg

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net