Activating a new understanding of gene regulation

Friday, November 16, 2018 - 14:50 in Biology & Nature

Regulation of gene expression — turning genes on or off, increasing or decreasing their expression — is critical for defining cell identity during development and coordinating cellular activity throughout the cell’s lifetime. The common model of gene regulation imagines the nucleus of the cell as a large space in which molecules involved in DNA transcription float around seemingly at random until they stumble across a DNA sequence or other transcriptional machinery to which they can bind, in other words, a haphazard approach. This paradigm is being upended, however, as over the last few years researchers have discovered that rather than being amorphous spaces dependent upon fortuitous collisions, cells actually compartmentalize their processes into discrete membraneless structures in order to congregate relevant molecules, thereby better coordinating their interactions. Research from the lab of Whitehead Institute member Richard Young and others earlier this year reported that such compartmentalization is a crucial, previously-unobserved aspect of...

Read the whole article on MIT Research

More from MIT Research

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net