Finding patterns in corrupted data

Tuesday, October 25, 2016 - 23:31 in Mathematics & Economics

Data analysis — and particularly big-data analysis — is often a matter of fitting data to some sort of mathematical model. The most familiar example of this might be linear regression, which finds a line that approximates a distribution of data points. But fitting data to probability distributions, such as the familiar bell curve, is just as common. If, however, a data set has just a few corrupted entries — say, outlandishly improbable measurements — standard data-fitting techniques can break down. This problem becomes much more acute with high-dimensional data, or data with many variables, which is ubiquitous in the digital age. Since the early 1960s, it’s been known that there are algorithms for weeding corruptions out of high-dimensional data, but none of the algorithms proposed in the past 50 years are practical when the variable count gets above, say, 12. That’s about to change. Earlier this month, at the IEEE Symposium on...

Read the whole article on MIT Research

More from MIT Research

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net