‘Micro-ants’: Tiny conveyor belts for the 21st century
A new microscopic system devised by researchers in MIT’s Department of Materials Science and Engineering could provide a novel method for moving tiny objects inside a microfluidic chip, and could also provide new insights into how cells and other objects are transported within the body.Inside organs such as the trachea and the intestines, tiny hair-like filaments called cilia are constantly in motion, beating in unison to create currents that sweep along cells, nutrients, or other tiny particles. The new research uses a self-assembling system to mimic that kind of motion, providing a simple way to move particles around in a precisely controlled way.Alfredo Alexander-Katz, the Merton C. Flemings Assistant Professor of Materials Science and Engineering, his doctoral student Charles Sing, and researchers at Boston University and in Germany, devised a system that uses so-called superparamagnetic beads — tiny beads made of polymers with specks of magnetic material in them —...