‘Micro-ants’: Tiny conveyor belts for the 21st century

Tuesday, December 15, 2009 - 05:42 in Physics & Chemistry

A new microscopic system devised by researchers in MIT’s Department of Materials Science and Engineering could provide a novel method for moving tiny objects inside a microfluidic chip, and could also provide new insights into how cells and other objects are transported within the body.Inside organs such as the trachea and the intestines, tiny hair-like filaments called cilia are constantly in motion, beating in unison to create currents that sweep along cells, nutrients, or other tiny particles. The new research uses a self-assembling system to mimic that kind of motion, providing a simple way to move particles around in a precisely controlled way.Alfredo Alexander-Katz, the Merton C. Flemings Assistant Professor of Materials Science and Engineering, his doctoral student Charles Sing, and researchers at Boston University and in Germany, devised a system that uses so-called superparamagnetic beads — tiny beads made of polymers with specks of magnetic material in them —...

Read the whole article on MIT Research

More from MIT Research

Latest Science Newsletter

Get the latest and most popular science news articles of the week in your Inbox! It's free!

Check out our next project, Biology.Net